Minimum matrix rank of k-regular (0,1) matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized Hadamard matrices of minimum rank

Generalized Hadamard matrices of order qn−1 (q a prime power, n ≥ 2) over GF (q) are related to symmetric nets in affine 2-(qn, qn−1, (qn−1 − 1)/(q − 1)) designs invariant under an elementary abelian group of order q acting semi-regularly on points and blocks. The rank of any such matrix over GF (q) is greater than or equal to n− 1. It is proved that a matrix of minimum q-rank is unique up to a...

متن کامل

Diagonal entry restrictions in minimum rank matrices

Let F be a field, let G be a simple graph on n vertices, and let S (G) be the class of all F -valued symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. For each graph G, there is an associated minimum rank class, M R (G) consisting of all matrices A ∈ S (G) with rankA = mr (G), the minimum rank among all matrices in S (G)....

متن کامل

E-Clean Matrices and Unit-Regular Matrices

Let $a, b, k,in K$ and $u, v in U(K)$. We show for any idempotent $ein K$, $(a 0|b 0)$ is e-clean iff $(a 0|u(vb + ka) 0)$ is e-clean and if $(a 0|b 0)$ is 0-clean, $(ua 0|u(vb + ka) 0)$ is too.

متن کامل

GENERALIZED REGULAR FUZZY MATRICES

In this paper, the concept of k-regular fuzzy matrix as a general- ization of regular matrix is introduced and some basic properties of a k-regular fuzzy matrix are derived. This leads to the characterization of a matrix for which the regularity index and the index are identical. Further the relation between regular, k-regular and regularity of powers of fuzzy matrices are dis- cussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1990

ISSN: 0024-3795

DOI: 10.1016/0024-3795(90)90240-d